Print…

Procurou por: Thymine


116  resultados encontrados

SearchResultCount:"116"

Sort Results

Visualização em Lista Easy View (new)

Classifique os resultados da pesquisa

Código de Artigo: (BOSSBS-8288R-A680)
Fornecedor: Bioss
Descrição: Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterised by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-8288R-FITC)
Fornecedor: Bioss
Descrição: Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterized by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-8288R-CY5.5)
Fornecedor: Bioss
Descrição: Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterized by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-8288R-A488)
Fornecedor: Bioss
Descrição: Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterized by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-8288R-A647)
Fornecedor: Bioss
Descrição: Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterized by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-8288R-A750)
Fornecedor: Bioss
Descrição: Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterised by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
UOM: 1 * 100 µl


Fornecedor: MP Biomedicals
Descrição: Deoxyribonucleic acid is a polynucleotide . It is an essential component of chromosomes in cell nuclei. It is the carrier of genetic material. It contains information in chemical code to direct the development of the cell according to its inheritance. The purine and pyrimidine bases of the nucleosides are primarily adenine, guanine, cytosine and thymine. The sugar is D-2-deoxyribose.

Código de Artigo: (PRSI29-755)
Fornecedor: ProSci Inc.
Descrição: UPB1 is a protein that belongs to the CN hydrolase family. Beta-ureidopropionase catalyzes the last step in the pyrimidine degradation pathway. The pyrimidine bases uracil and thymine are degraded via the consecutive action of dihydropyrimidine dehydrogenase (DHPDH), dihydropyrimidinase (DHP) and beta-ureidopropionase (UP) to beta-alanine and beta-aminoisobutyric acid, respectively. UP deficiencies are associated with N-carbamyl-beta-amino aciduria and may lead to abnormalities in neurological activityThis gene encodes a protein that belongs to the CN hydrolase family. Beta-ureidopropionase catalyzes the last step in the pyrimidine degradation pathway. The pyrimidine bases uracil and thymine are degraded via the consecutive action of dihydropyrimidine dehydrogenase (DHPDH), dihydropyrimidinase (DHP) and beta-ureidopropionase (UP) to beta-alanine and beta-aminoisobutyric acid, respectively. UP deficiencies are associated with N-carbamyl-beta-amino aciduria and may lead to abnormalities in neurological activity.
UOM: 1 * 100 µG


Código de Artigo: (PRSI34-014)
Fornecedor: ProSci Inc.
Descrição: Deoxyribonucleic acid (DNA) is a nucleic acid that stores long-term information regarding the development and function of all known living organisms. DNA consists of two long nucleotide polymers, which are composed of four bases, namely adenine, thymine, guanine and cytosine, all of which are flanked by a phosphate-deoxyribose backbone. This mAb can be used to stain the nuclei in cell or tissue preparations and can be used as a nuclear marker in human cells.
UOM: 1 * 100 µG


Código de Artigo: (BOSSBS-13018R)
Fornecedor: Bioss
Descrição: DNA polymerase activity is essential for replication, repair, recombination and mutagenesis. DNA polymerases can often bypass DNA lesions that block DNA replication, thereby allowing the replication of damaged DNA. One such DNA polymerase is the distributive enzyme DNA Pol i, which is encoded by the POLI gene. POLI is located on human chromosome 18q21.2, a region often implicated in the etiology of many human cancers. At thymine templates, DNA Pol i is highly error-prone when replicating undamaged DNA in that it favors the misincorporation of guanine over the correct nucleotide, adenosine. DNA Pol i also promotes the replication of damaged DNA by misincorporating deoxynucleotides opposite DNA lesions. DNA Pol i acts sequentially with DNA Pol Ω, which is essential for damage-induced mutagenesis, to complete the DNA lesion bypass. Therefore, replication involving DNA Pol i is likely to be highly mutagenic.
UOM: 1 * 100 µl


Código de Artigo: (PRSI30-136)
Fornecedor: ProSci Inc.
Descrição: DUT is an essential enzyme of nucleotide metabolism. This protein forms a ubiquitous, homotetrameric enzyme that hydrolyzes dUTP to dUMP and pyrophosphate. This reaction serves two cellular purposes: providing a precursor (dUMP) for the synthesis of thymine nucleotides needed for DNA replication, and limiting intracellular pools of dUTP. Elevated levels of dUTP lead to increased incorporation of uracil into DNA, which induces extensive excision repair mediated by uracil glycosylase. This repair process, resulting in the removal and reincorporation of dUTP, is self-defeating and leads to DNA fragmentation and cell death.This gene encodes an essential enzyme of nucleotide metabolism. The encoded protein forms a ubiquitous, homotetrameric enzyme that hydrolyzes dUTP to dUMP and pyrophosphate. This reaction serves two cellular purposes: providing a precursor (dUMP) for the synthesis of thymine nucleotides needed for DNA replication, and limiting intracellular pools of dUTP. Elevated levels of dUTP lead to increased incorporation of uracil into DNA, which induces extensive excision repair mediated by uracil glycosylase. This repair process, resulting in the removal and reincorporation of dUTP, is self-defeating and leads to DNA fragmentation and cell death. Alternative splicing of this gene leads to different isoforms that localize to either the mitochondrion or nucleus. A related pseudogene is located on chromosome 19.
UOM: 1 * 100 µG


Fornecedor: Biotium
Descrição: This monoclonal antibody is part of a new panel of reagents, which recognizes subcellular organelles or compartments of human cells. These markers may be useful in identification of these organelles in cells, tissues, and biochemical preparations. This MAb recognizes the double stranded DNA in human cells. It can be used to stain the nuclei in cell or tissue preparations and can be used as a nuclear marker in human cells. This MAb produces a homogeneous staining pattern in the nucleus of normal and malignant cells.,Double Stranded deoxyribonucleic acid (ds DNA) is the genetic material of all cells and many viruses and is a polymer of nucleotides. The monomer consists of phosphorylated 2-deoxyribose N-glycosidically linked to one of four bases, adenine, cytosine, guanine or thymine. These are linked together by 3',5'-phosphodiester bridges. In the Watson-Crick double-helix model, two complementary strands are wound in a right-handed helix and held together by hydrogen bonds between complementary base pairs.

Código de Artigo: (BOSSBS-13018R-A555)
Fornecedor: Bioss
Descrição: DNA polymerase activity is essential for replication, repair, recombination and mutagenesis. DNA polymerases can often bypass DNA lesions that block DNA replication, thereby allowing the replication of damaged DNA. One such DNA polymerase is the distributive enzyme DNA Pol i, which is encoded by the POLI gene. POLI is located on human chromosome 18q21.2, a region often implicated in the etiology of many human cancers. At thymine templates, DNA Pol i is highly error-prone when replicating undamaged DNA in that it favors the misincorporation of guanine over the correct nucleotide, adenosine. DNA Pol i also promotes the replication of damaged DNA by misincorporating deoxynucleotides opposite DNA lesions. DNA Pol i acts sequentially with DNA Pol Ω, which is essential for damage-induced mutagenesis, to complete the DNA lesion bypass. Therefore, replication involving DNA Pol i is likely to be highly mutagenic.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-13018R-FITC)
Fornecedor: Bioss
Descrição: DNA polymerase activity is essential for replication, repair, recombination and mutagenesis. DNA polymerases can often bypass DNA lesions that block DNA replication, thereby allowing the replication of damaged DNA. One such DNA polymerase is the distributive enzyme DNA Pol i, which is encoded by the POLI gene. POLI is located on human chromosome 18q21.2, a region often implicated in the etiology of many human cancers. At thymine templates, DNA Pol i is highly error-prone when replicating undamaged DNA in that it favors the misincorporation of guanine over the correct nucleotide, adenosine. DNA Pol i also promotes the replication of damaged DNA by misincorporating deoxynucleotides opposite DNA lesions. DNA Pol i acts sequentially with DNA Pol Ω, which is essential for damage-induced mutagenesis, to complete the DNA lesion bypass. Therefore, replication involving DNA Pol i is likely to be highly mutagenic.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-13018R-CY7)
Fornecedor: Bioss
Descrição: DNA polymerase activity is essential for replication, repair, recombination and mutagenesis. DNA polymerases can often bypass DNA lesions that block DNA replication, thereby allowing the replication of damaged DNA. One such DNA polymerase is the distributive enzyme DNA Pol i, which is encoded by the POLI gene. POLI is located on human chromosome 18q21.2, a region often implicated in the etiology of many human cancers. At thymine templates, DNA Pol i is highly error-prone when replicating undamaged DNA in that it favors the misincorporation of guanine over the correct nucleotide, adenosine. DNA Pol i also promotes the replication of damaged DNA by misincorporating deoxynucleotides opposite DNA lesions. DNA Pol i acts sequentially with DNA Pol Ω, which is essential for damage-induced mutagenesis, to complete the DNA lesion bypass. Therefore, replication involving DNA Pol i is likely to be highly mutagenic.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-13018R-A647)
Fornecedor: Bioss
Descrição: DNA polymerase activity is essential for replication, repair, recombination and mutagenesis. DNA polymerases can often bypass DNA lesions that block DNA replication, thereby allowing the replication of damaged DNA. One such DNA polymerase is the distributive enzyme DNA Pol i, which is encoded by the POLI gene. POLI is located on human chromosome 18q21.2, a region often implicated in the etiology of many human cancers. At thymine templates, DNA Pol i is highly error-prone when replicating undamaged DNA in that it favors the misincorporation of guanine over the correct nucleotide, adenosine. DNA Pol i also promotes the replication of damaged DNA by misincorporating deoxynucleotides opposite DNA lesions. DNA Pol i acts sequentially with DNA Pol Ω, which is essential for damage-induced mutagenesis, to complete the DNA lesion bypass. Therefore, replication involving DNA Pol i is likely to be highly mutagenic.
UOM: 1 * 100 µl


Preço sob consulta
O stock para este item é limitado. Por favor, certifique-se de que efetuou o seu login para visualizar o stock disponível. Se a call ainda é exibida e precisar de ajuda, por favor, ligue para 213 600 770
O stock para este item é limitado. Por favor, certifique-se de que efetuou o seu login para visualizar o stock disponível. Se a call está visível e precisar de ajuda, por favor, ligue para 213 600 770
Este produto é sujeito a regulamentação especifica.
Em caso de encomenda, será contactado a solicitar documentação complementar necessária e/ou obrigatória (licença, autorização ou declaração de uso final) para a continuidade do pedido. Agradecemos a vossa compreensão
Este produto é sujeito a regulamentação especifica.
Em caso de encomenda, será contactado a solicitar documentação complementar necessária e/ou obrigatória (licença, autorização ou declaração de uso final) para a continuidade do pedido. Agradecemos a vossa compreensão.
Este produto está bloqueado. Para obter mais informações, contacte a VWR através do número 213 600 770.
O produto pretendido já não se encontra disponível. O produto indicado é um substituto.
Este produto encontra-se em rutura de stock. Poderá encontrar alternativas pesquisando pelo código de artigo indicado acima. Se precisar de ajuda, por favor contacte a VWR através do 213 600 770.
33 - 48 of 116
no targeter for Bottom