Print…

Procurou por: PCR+Learning+Activities


67 392  resultados encontrados

SearchResultCount:"67392"

Sort Results

Visualização em Lista Easy View (new)

Classifique os resultados da pesquisa

Código de Artigo: (BOSSBS-13390R-A488)
Fornecedor: Bioss
Descrição: GLUD2 is both mitochondrial matrix enzymes belonging to the Glu/Leu/Phe/Val dehydrogenases family. Exisiting as homohexamers, GLUD1 catalyzes the oxidative deamination of glutamate to ?ketoglutarate and ammonia while GLUD2 is involved in the recycling of glutamate during neurotransmission. GLUD1 is critical for regulating amino acid induced insulin secretion and is allosterically activated by ADP and inhibited by GTP and ATP. Mutations in the gene encoding GLUD1 causes hyperinsulinism-hyperammonemia syndrome (HHS), which is an inherited condition characterized by high insulin and ammonia levels in the blood. GLUD1 may also be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate. GLUD2 is expressed in testis and retina, with lower levels found in brain.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-13390R-FITC)
Fornecedor: Bioss
Descrição: GLUD2 is both mitochondrial matrix enzymes belonging to the Glu/Leu/Phe/Val dehydrogenases family. Exisiting as homohexamers, GLUD1 catalyzes the oxidative deamination of glutamate to ?ketoglutarate and ammonia while GLUD2 is involved in the recycling of glutamate during neurotransmission. GLUD1 is critical for regulating amino acid induced insulin secretion and is allosterically activated by ADP and inhibited by GTP and ATP. Mutations in the gene encoding GLUD1 causes hyperinsulinism-hyperammonemia syndrome (HHS), which is an inherited condition characterized by high insulin and ammonia levels in the blood. GLUD1 may also be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate. GLUD2 is expressed in testis and retina, with lower levels found in brain.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-13390R-A350)
Fornecedor: Bioss
Descrição: GLUD2 is both mitochondrial matrix enzymes belonging to the Glu/Leu/Phe/Val dehydrogenases family. Exisiting as homohexamers, GLUD1 catalyzes the oxidative deamination of glutamate to ?ketoglutarate and ammonia while GLUD2 is involved in the recycling of glutamate during neurotransmission. GLUD1 is critical for regulating amino acid induced insulin secretion and is allosterically activated by ADP and inhibited by GTP and ATP. Mutations in the gene encoding GLUD1 causes hyperinsulinism-hyperammonemia syndrome (HHS), which is an inherited condition characterized by high insulin and ammonia levels in the blood. GLUD1 may also be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate. GLUD2 is expressed in testis and retina, with lower levels found in brain.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-0175R-A555)
Fornecedor: Bioss
Descrição: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-0175R-A680)
Fornecedor: Bioss
Descrição: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerisation, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-0288R)
Fornecedor: Bioss
Descrição: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-0175R-CY3)
Fornecedor: Bioss
Descrição: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-0175R-CY5)
Fornecedor: Bioss
Descrição: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-11528R)
Fornecedor: Bioss
Descrição: GALR3 a 368 and 370 amino acid protein in human and rat, respectively, belongs to a family of G protein-coupled receptors that bind the neuropeptide galanin, which is distributed throughout the central and peripheral nervous system, the pituitary gland, the gastrointestinal tract and in the endocrine and exocrine pancreas. GALR3 mRNA is widely distributed, but expressed at low abundance. In human, GALR3 mRNA is highly expressed in the hypothalamus, pituitary and testis, and is expressed to a lesser extent in adrenal gland and pancreas. Rat and human GALR3 co-express with potassium channel subunits GIRK1 and GIRK4. Like GALR1, GALR3 signaling pathways lead to the inhibition of adenylate cyclase and to the activation of potassium channels, which are linked to the regulation of neurotransmitter release. Binding of galanin to galanin receptors results in increased feeding, impaired learning, enhanced opiate analgesia and decreased opiate place preference.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-11528R-A488)
Fornecedor: Bioss
Descrição: GALR3 a 368 and 370 amino acid protein in human and rat, respectively, belongs to a family of G protein-coupled receptors that bind the neuropeptide galanin, which is distributed throughout the central and peripheral nervous system, the pituitary gland, the gastrointestinal tract and in the endocrine and exocrine pancreas. GALR3 mRNA is widely distributed, but expressed at low abundance. In human, GALR3 mRNA is highly expressed in the hypothalamus, pituitary and testis, and is expressed to a lesser extent in adrenal gland and pancreas. Rat and human GALR3 co-express with potassium channel subunits GIRK1 and GIRK4. Like GALR1, GALR3 signaling pathways lead to the inhibition of adenylate cyclase and to the activation of potassium channels, which are linked to the regulation of neurotransmitter release. Binding of galanin to galanin receptors results in increased feeding, impaired learning, enhanced opiate analgesia and decreased opiate place preference.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-0175R-A350)
Fornecedor: Bioss
Descrição: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-0175R-HRP)
Fornecedor: Bioss
Descrição: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-13390R-A750)
Fornecedor: Bioss
Descrição: GLUD2 is both mitochondrial matrix enzymes belonging to the Glu/Leu/Phe/Val dehydrogenases family. Exisiting as homohexamers, GLUD1 catalyzes the oxidative deamination of glutamate to ?ketoglutarate and ammonia while GLUD2 is involved in the recycling of glutamate during neurotransmission. GLUD1 is critical for regulating amino acid induced insulin secretion and is allosterically activated by ADP and inhibited by GTP and ATP. Mutations in the gene encoding GLUD1 causes hyperinsulinism-hyperammonemia syndrome (HHS), which is an inherited condition characterized by high insulin and ammonia levels in the blood. GLUD1 may also be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate. GLUD2 is expressed in testis and retina, with lower levels found in brain.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-13390R-HRP)
Fornecedor: Bioss
Descrição: GLUD2 is both mitochondrial matrix enzymes belonging to the Glu/Leu/Phe/Val dehydrogenases family. Exisiting as homohexamers, GLUD1 catalyzes the oxidative deamination of glutamate to ?ketoglutarate and ammonia while GLUD2 is involved in the recycling of glutamate during neurotransmission. GLUD1 is critical for regulating amino acid induced insulin secretion and is allosterically activated by ADP and inhibited by GTP and ATP. Mutations in the gene encoding GLUD1 causes hyperinsulinism-hyperammonemia syndrome (HHS), which is an inherited condition characterized by high insulin and ammonia levels in the blood. GLUD1 may also be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate. GLUD2 is expressed in testis and retina, with lower levels found in brain.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-11528R-A680)
Fornecedor: Bioss
Descrição: GALR3 a 368 and 370 amino acid protein in human and rat, respectively, belongs to a family of G protein-coupled receptors that bind the neuropeptide galanin, which is distributed throughout the central and peripheral nervous system, the pituitary gland, the gastrointestinal tract and in the endocrine and exocrine pancreas. GALR3 mRNA is widely distributed, but expressed at low abundance. In human, GALR3 mRNA is highly expressed in the hypothalamus, pituitary and testis, and is expressed to a lesser extent in adrenal gland and pancreas. Rat and human GALR3 co-express with potassium channel subunits GIRK1 and GIRK4. Like GALR1, GALR3 Signalling pathways lead to the inhibition of adenylate cyclase and to the activation of potassium channels, which are linked to the regulation of neurotransmitter release. Binding of galanin to galanin receptors results in increased feeding, impaired learning, enhanced opiate analgesia and decreased opiate place preference.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-11528R-A555)
Fornecedor: Bioss
Descrição: GALR3 a 368 and 370 amino acid protein in human and rat, respectively, belongs to a family of G protein-coupled receptors that bind the neuropeptide galanin, which is distributed throughout the central and peripheral nervous system, the pituitary gland, the gastrointestinal tract and in the endocrine and exocrine pancreas. GALR3 mRNA is widely distributed, but expressed at low abundance. In human, GALR3 mRNA is highly expressed in the hypothalamus, pituitary and testis, and is expressed to a lesser extent in adrenal gland and pancreas. Rat and human GALR3 co-express with potassium channel subunits GIRK1 and GIRK4. Like GALR1, GALR3 signaling pathways lead to the inhibition of adenylate cyclase and to the activation of potassium channels, which are linked to the regulation of neurotransmitter release. Binding of galanin to galanin receptors results in increased feeding, impaired learning, enhanced opiate analgesia and decreased opiate place preference.
UOM: 1 * 100 µl


Preço sob consulta
O stock para este item é limitado. Por favor, certifique-se de que efetuou o seu login para visualizar o stock disponível. Se a call ainda é exibida e precisar de ajuda, por favor, ligue para 213 600 770
O stock para este item é limitado. Por favor, certifique-se de que efetuou o seu login para visualizar o stock disponível. Se a call está visível e precisar de ajuda, por favor, ligue para 213 600 770
Este produto é sujeito a regulamentação especifica.
Em caso de encomenda, será contactado a solicitar documentação complementar necessária e/ou obrigatória (licença, autorização ou declaração de uso final) para a continuidade do pedido. Agradecemos a vossa compreensão
Este produto é sujeito a regulamentação especifica.
Em caso de encomenda, será contactado a solicitar documentação complementar necessária e/ou obrigatória (licença, autorização ou declaração de uso final) para a continuidade do pedido. Agradecemos a vossa compreensão.
Este produto está bloqueado. Para obter mais informações, contacte a VWR através do número 213 600 770.
O produto pretendido já não se encontra disponível. O produto indicado é um substituto.
Este produto encontra-se em rutura de stock. Poderá encontrar alternativas pesquisando pelo código de artigo indicado acima. Se precisar de ajuda, por favor contacte a VWR através do 213 600 770.
81 - 96 of 67 392
no targeter for Bottom