Print…

Procurou por: Bollé Safety


67 392  resultados encontrados

Sort Results

Visualização em Lista Easy View (new)
SearchResultCount:"67392"
Descrição: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
Código de Artigo: BOSSBS-5382R-A647
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
Código de Artigo: BOSSBS-5382R-A488
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: Calcyon is a single transmembrane protein that interacts with D1 dopamine receptors. Dopamine is a neurotransmitter that regulates synaptic transmission involved in learning and memory. D1 receptors, the most abundant dopamine receptor in the central nervous system, appear to modulate the activity of D2 dopamine receptors, mediate various behavioural responses, and regulate neuron growth and differentiation. Calcyon is present in neuronal cell bodies and processes of the cortex and hippocampus, and it is especially abundant in pyramidal neurons. Interaction of Calcyon with D1 receptors results in a release of intracellular calcium.
Código de Artigo: BOSSBS-11719R
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: GLUD2 is both mitochondrial matrix enzymes belonging to the Glu/Leu/Phe/Val dehydrogenases family. Exisiting as homohexamers, GLUD1 catalyzes the oxidative deamination of glutamate to ?ketoglutarate and ammonia while GLUD2 is involved in the recycling of glutamate during neurotransmission. GLUD1 is critical for regulating amino acid induced insulin secretion and is allosterically activated by ADP and inhibited by GTP and ATP. Mutations in the gene encoding GLUD1 causes hyperinsulinism-hyperammonemia syndrome (HHS), which is an inherited condition characterized by high insulin and ammonia levels in the blood. GLUD1 may also be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate. GLUD2 is expressed in testis and retina, with lower levels found in brain.
Código de Artigo: BOSSBS-13390R-A680
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: GLUD2 is both mitochondrial matrix enzymes belonging to the Glu/Leu/Phe/Val dehydrogenases family. Exisiting as homohexamers, GLUD1 catalyzes the oxidative deamination of glutamate to ?ketoglutarate and ammonia while GLUD2 is involved in the recycling of glutamate during neurotransmission. GLUD1 is critical for regulating amino acid induced insulin secretion and is allosterically activated by ADP and inhibited by GTP and ATP. Mutations in the gene encoding GLUD1 causes hyperinsulinism-hyperammonemia syndrome (HHS), which is an inherited condition characterized by high insulin and ammonia levels in the blood. GLUD1 may also be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate. GLUD2 is expressed in testis and retina, with lower levels found in brain.
Código de Artigo: BOSSBS-13390R-CY7
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain.
Código de Artigo: BOSSBS-8566R-A680
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain.
Código de Artigo: BOSSBS-5382R-A680
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
Código de Artigo: BOSSBS-8566R-A488
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
Código de Artigo: BOSSBS-3305R-A488
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
Código de Artigo: BOSSBS-3305R-CY7
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
Código de Artigo: BOSSBS-3305R-HRP
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
Código de Artigo: BOSSBS-3305R-A555
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: GALR3 a 368 and 370 amino acid protein in human and rat, respectively, belongs to a family of G protein-coupled receptors that bind the neuropeptide galanin, which is distributed throughout the central and peripheral nervous system, the pituitary gland, the gastrointestinal tract and in the endocrine and exocrine pancreas. GALR3 mRNA is widely distributed, but expressed at low abundance. In human, GALR3 mRNA is highly expressed in the hypothalamus, pituitary and testis, and is expressed to a lesser extent in adrenal gland and pancreas. Rat and human GALR3 co-express with potassium channel subunits GIRK1 and GIRK4. Like GALR1, GALR3 signaling pathways lead to the inhibition of adenylate cyclase and to the activation of potassium channels, which are linked to the regulation of neurotransmitter release. Binding of galanin to galanin receptors results in increased feeding, impaired learning, enhanced opiate analgesia and decreased opiate place preference.
Código de Artigo: BOSSBS-11528R-CY3
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerisation, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
Código de Artigo: BOSSBS-0175R-A750
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: GALR3 a 368 and 370 amino acid protein in human and rat, respectively, belongs to a family of G protein-coupled receptors that bind the neuropeptide galanin, which is distributed throughout the central and peripheral nervous system, the pituitary gland, the gastrointestinal tract and in the endocrine and exocrine pancreas. GALR3 mRNA is widely distributed, but expressed at low abundance. In human, GALR3 mRNA is highly expressed in the hypothalamus, pituitary and testis, and is expressed to a lesser extent in adrenal gland and pancreas. Rat and human GALR3 co-express with potassium channel subunits GIRK1 and GIRK4. Like GALR1, GALR3 signaling pathways lead to the inhibition of adenylate cyclase and to the activation of potassium channels, which are linked to the regulation of neurotransmitter release. Binding of galanin to galanin receptors results in increased feeding, impaired learning, enhanced opiate analgesia and decreased opiate place preference.
Código de Artigo: BOSSBS-11528R-A350
UOM: 1 * 100 µl
Fornecedor: Bioss


Descrição: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
Código de Artigo: BOSSBS-0175R-CY7
UOM: 1 * 100 µl
Fornecedor: Bioss


65 - 80 of 67 392