Print…

Procurou por: Muflas+tubulares


562  resultados encontrados

SearchResultCount:"562"

Sort Results

Visualização em Lista Easy View (new)

Classifique os resultados da pesquisa

Código de Artigo: (PRSI91-668)
Fornecedor: ProSci Inc.
Descrição: Fumarylacetoacetase belongs to the FAH family. Fumarylacetoacetase is primary expressed in liver and kidney. It exists as a homodimer and catalyses the hydrolysis of 4-fumarylacetoacetate into fumarate and acetoacetate. Defects in Fumarylacetoacetase cause tyrosinemia type 1, which is congenital metabolism defect characterised by elevated levels of tyrosine in the blood and urine, and hepatorenal manifestations. Typical features include renal tubular injury, self-mutilation, hepatic necrosis, episodic weakness, and seizures.
UOM: 1 * 50 µG


Código de Artigo: (BNUM0731-50)
Fornecedor: Biotium
Descrição: This antibody recognizes a protein of 54 kDa, which is identified as AMACR, also known as p504S. It is an enzyme that is involved in bile acid biosynthesis and β-oxidation of branched-chain fatty acids. AMACR is essential in lipid metabolism. It is expressed in cells of premalignant high-grade prostatic intraepithelial neoplasia (HGPIN) and prostate adenocarcinoma. The majority of the carcinoma cells show a distinct granular cytoplasmic staining reaction. AMACR is present at low or undetectable levels in glandular epithelial cells of normal prostate and benign prostatic hyperplasia. A spotty granular cytoplasmic staining is seen in a few cells of the benign glands. AMACR is expressed in normal liver (hepatocytes), kidney (tubular epithelial cells) and gall bladder (epithelial cells). Expression has also been found in lung (bronchial epithelial cells) and colon (colonic surface epithelium). AMACR expression can also be found in hepatocellular carcinoma and kidney carcinoma. Past studies have also shown that AMACR is expressed in various colon carcinomas (well, moderately and poorly differentiated) and overexpressed in prostate carcinoma.
UOM: 1 * 50 µl


Código de Artigo: (BOSSBS-4100R-CY7)
Fornecedor: Bioss
Descrição: Functions in mitochondrial and peroxisomal division. Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism. Through its function in mitochondrial division, ensures the survival of at least some types of postmitotic neurons, including Purkinje cells, by suppressing oxidative damage. Required for normal brain development, including that of cerebellum. Facilitates developmentally regulated apoptosis during neural tube formation. Required for a normal rate of cytochrome c release and caspase activation during apoptosis; this requirement may depend upon the cell type and the physiological apoptotic cues. Also required for mitochondrial fission during mitosis. Required for formation of endocytic vesicles. Proposed to regulate synaptic vesicle membrane dynamics through association with BCL2L1 isoform Bcl-X(L) which stimulates its GTPase activity in synaptic vesicles; the function may require its recruitment by MFF to clathrin-containing vesicles. Required for programmed necrosis execution. Isoform 1 and isoform 4 inhibit peroxisomal division when overexpressed.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-4100R-CY5)
Fornecedor: Bioss
Descrição: Functions in mitochondrial and peroxisomal division. Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism. Through its function in mitochondrial division, ensures the survival of at least some types of postmitotic neurons, including Purkinje cells, by suppressing oxidative damage. Required for normal brain development, including that of cerebellum. Facilitates developmentally regulated apoptosis during neural tube formation. Required for a normal rate of cytochrome c release and caspase activation during apoptosis; this requirement may depend upon the cell type and the physiological apoptotic cues. Also required for mitochondrial fission during mitosis. Required for formation of endocytic vesicles. Proposed to regulate synaptic vesicle membrane dynamics through association with BCL2L1 isoform Bcl-X(L) which stimulates its GTPase activity in synaptic vesicles; the function may require its recruitment by MFF to clathrin-containing vesicles. Required for programmed necrosis execution. Isoform 1 and isoform 4 inhibit peroxisomal division when overexpressed.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-12193R-A680)
Fornecedor: Bioss
Descrição: Transcription factor required for formation of positional identity in the developing retina, regionalization of the optic chiasm and morphogenesis of the kidney. Can neuralize ectodermal cells directly By similarity. Binds to the consensus sequence 5'-A[AT]T[AG]TTTGTTT-3' and acts as a transcriptional repressor. Also acts as a transcriptional activator. Promotes development of neural crest cells from neural tube progenitors. Restricts neural progenitor cells to the neural crest lineage while suppressing interneuron differentiation. Required for maintenance of pluripotent cells in the pre-implantation and peri-implantation stages of embryogenesis. Probable transcription factor involved in embryogenesis and somatogenesis. FOXD1 is involved in regulating inflammation as well as kidney and retinal development. FOXD1 regulates the activity of NFAT and NFkB. Deficiency of FOXD1 results in multiorgan systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autogolgous MLRs. In kidneys, FOXD1 controls the production of signals required for the normal transition of induced mesenchyme into tubular epithelium and full growth and branching of the collecting system. Deletion of FOXD1 results in renal abnormalities. FOXD2 acts as a modulator of T cell activation.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-12549R-A555)
Fornecedor: Bioss
Descrição: Vacuolar-type H+-ATPase (V-ATPase) is a multisubunit enzyme responsible for acidification of eukaryotic intracellular organelles. V-ATPases pump protons against an electrochemical gradient, while F-ATPases reverse the process, thereby synthesizing ATP. A peripheral V1 domain, which is responsible for ATP hydrolysis, and a integral V0 domain, which is responsible for proton translocation, compose V-ATPase. Nine subunits (A–H) make up the V1 domain and five subunits (a, d, c, c' and c") make up the V0 domain. Like F-ATPase, V-ATPase most likely operates through a rotary mechanism. The V-ATPase V1 B subunit exists as two isoforms. In the inner ear, the V-ATPase B1 isoform functions in proton secretion and is required to maintain proper endolymph pH and normal auditory function. The gene encoding the human V-ATPase B1 isoform maps to chromosome 2cen-q13. Mutations in this gene cause distal renal tubular acidosis associated with sensorineural deafness. The V-ATPase B2 isoform is expressed in kidney and is the only B isoform expressed in osteoclasts. The gene encoding the human V-ATPase B2 isoform maps to chromosome 8p22-p21.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-12549R-A350)
Fornecedor: Bioss
Descrição: Vacuolar-type H+-ATPase (V-ATPase) is a multisubunit enzyme responsible for acidification of eukaryotic intracellular organelles. V-ATPases pump protons against an electrochemical gradient, while F-ATPases reverse the process, thereby synthesizing ATP. A peripheral V1 domain, which is responsible for ATP hydrolysis, and a integral V0 domain, which is responsible for proton translocation, compose V-ATPase. Nine subunits (A–H) make up the V1 domain and five subunits (a, d, c, c' and c") make up the V0 domain. Like F-ATPase, V-ATPase most likely operates through a rotary mechanism. The V-ATPase V1 B subunit exists as two isoforms. In the inner ear, the V-ATPase B1 isoform functions in proton secretion and is required to maintain proper endolymph pH and normal auditory function. The gene encoding the human V-ATPase B1 isoform maps to chromosome 2cen-q13. Mutations in this gene cause distal renal tubular acidosis associated with sensorineural deafness. The V-ATPase B2 isoform is expressed in kidney and is the only B isoform expressed in osteoclasts. The gene encoding the human V-ATPase B2 isoform maps to chromosome 8p22-p21.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-12549R-FITC)
Fornecedor: Bioss
Descrição: Vacuolar-type H+-ATPase (V-ATPase) is a multisubunit enzyme responsible for acidification of eukaryotic intracellular organelles. V-ATPases pump protons against an electrochemical gradient, while F-ATPases reverse the process, thereby synthesizing ATP. A peripheral V1 domain, which is responsible for ATP hydrolysis, and a integral V0 domain, which is responsible for proton translocation, compose V-ATPase. Nine subunits (A–H) make up the V1 domain and five subunits (a, d, c, c' and c") make up the V0 domain. Like F-ATPase, V-ATPase most likely operates through a rotary mechanism. The V-ATPase V1 B subunit exists as two isoforms. In the inner ear, the V-ATPase B1 isoform functions in proton secretion and is required to maintain proper endolymph pH and normal auditory function. The gene encoding the human V-ATPase B1 isoform maps to chromosome 2cen-q13. Mutations in this gene cause distal renal tubular acidosis associated with sensorineural deafness. The V-ATPase B2 isoform is expressed in kidney and is the only B isoform expressed in osteoclasts. The gene encoding the human V-ATPase B2 isoform maps to chromosome 8p22-p21.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-4100R-A680)
Fornecedor: Bioss
Descrição: Functions in mitochondrial and peroxisomal division. Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism. Through its function in mitochondrial division, ensures the survival of at least some types of postmitotic neurons, including Purkinje cells, by suppressing oxidative damage. Required for normal brain development, including that of cerebellum. Facilitates developmentally regulated apoptosis during neural tube formation. Required for a normal rate of cytochrome c release and caspase activation during apoptosis; this requirement may depend upon the cell type and the physiological apoptotic cues. Also required for mitochondrial fission during mitosis. Required for formation of endocytic vesicles. Proposed to regulate synaptic vesicle membrane dynamics through association with BCL2L1 isoform Bcl-X(L) which stimulates its GTPase activity in synaptic vesicles; the function may require its recruitment by MFF to clathrin-containing vesicles. Required for programmed necrosis execution. Isoform 1 and isoform 4 inhibit peroxisomal division when overexpressed.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-12193R-A488)
Fornecedor: Bioss
Descrição: Transcription factor required for formation of positional identity in the developing retina, regionalization of the optic chiasm and morphogenesis of the kidney. Can neuralize ectodermal cells directly By similarity. Binds to the consensus sequence 5'-A[AT]T[AG]TTTGTTT-3' and acts as a transcriptional repressor. Also acts as a transcriptional activator. Promotes development of neural crest cells from neural tube progenitors. Restricts neural progenitor cells to the neural crest lineage while suppressing interneuron differentiation. Required for maintenance of pluripotent cells in the pre-implantation and peri-implantation stages of embryogenesis. Probable transcription factor involved in embryogenesis and somatogenesis. FOXD1 is involved in regulating inflammation as well as kidney and retinal development. FOXD1 regulates the activity of NFAT and NFkB. Deficiency of FOXD1 results in multiorgan systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autogolgous MLRs. In kidneys, FOXD1 controls the production of signals required for the normal transition of induced mesenchyme into tubular epithelium and full growth and branching of the collecting system. Deletion of FOXD1 results in renal abnormalities. FOXD2 acts as a modulator of T cell activation.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-12193R-FITC)
Fornecedor: Bioss
Descrição: Transcription factor required for formation of positional identity in the developing retina, regionalization of the optic chiasm and morphogenesis of the kidney. Can neuralize ectodermal cells directly By similarity. Binds to the consensus sequence 5'-A[AT]T[AG]TTTGTTT-3' and acts as a transcriptional repressor. Also acts as a transcriptional activator. Promotes development of neural crest cells from neural tube progenitors. Restricts neural progenitor cells to the neural crest lineage while suppressing interneuron differentiation. Required for maintenance of pluripotent cells in the pre-implantation and peri-implantation stages of embryogenesis. Probable transcription factor involved in embryogenesis and somatogenesis. FOXD1 is involved in regulating inflammation as well as kidney and retinal development. FOXD1 regulates the activity of NFAT and NFkB. Deficiency of FOXD1 results in multiorgan systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autogolgous MLRs. In kidneys, FOXD1 controls the production of signals required for the normal transition of induced mesenchyme into tubular epithelium and full growth and branching of the collecting system. Deletion of FOXD1 results in renal abnormalities. FOXD2 acts as a modulator of T cell activation.
UOM: 1 * 100 µl


Código de Artigo: (PRSI92-248)
Fornecedor: ProSci Inc.
Descrição: Neutrophil gelatinase-associated lipocalin(LCN2) is a secreted protein and belongs to the calycin superfamily. This protein is released from injured tubular cells after various damaging stimuli, is already known by nephrologists as one of the most promising biomarkers of incoming Acute Kidney Injury (AKI). Recent evidence also suggests its role as a biomarker in a variety of other renal and non-renal conditions. Moreover, recent studies seem to suggest a potential involvement of this factor also in the genesis and progression of chronic kidney diseases. NGAL is the first known mammalian protein which specifically binds organic molecules called siderophores, which are high-affinity iron chelators. NGAL, first known as an antibacterial factor of natural immunity, and an acute phase protein, is currently one of the most interesting and enigmatic proteins involved in the process of tumor development. acting as an intracellular iron carrier and protecting MMP9 from proteolytic degradation, NGAL has a clear pro-tumoral effect, as has already been observed in different tumors (e.g. breast, stomach, oesophagus, brain) in humans. In thyroid carcinomas, NGAL is strongly induced by NF-kB, an important factor involved both in tumor growth and in the link between chronic inflammation and neoplastic development. Thus, Lipocalin-2 (LCN2/NGAL) has been implicated in a variety of processes including cell differentiation, proliferation, survival and morphogenesis.
UOM: 1 * 0,05 mg

Novo produto


Código de Artigo: (BOSSBS-2945R-A750)
Fornecedor: Bioss
Descrição: Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:12198132). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:19816406, PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptors (IGF2R, M6PR and SORT1) and Shiginella dysenteria toxin stxB. Plays a role in targeting ligand-activated EGFR to the lysosomes for degradation after endocytosis from the cell surface and release from the Golgi (PubMed:12198132, PubMed:15498486, PubMed:17550970, PubMed:17101778, PubMed:18088323, PubMed:21040701). Involvement in retromer-independent endocytic trafficking of P2RY1 and lysosomal degradation of protease-activated receptor-1/F2R (PubMed:16407403, PubMed:20070609). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). Required for endocytosis of DRD5 upon agonist stimulation but not for basal receptor trafficking (PubMed:23152498).
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-2945R-CY7)
Fornecedor: Bioss
Descrição: Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:12198132). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:19816406, PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptors (IGF2R, M6PR and SORT1) and Shiginella dysenteria toxin stxB. Plays a role in targeting ligand-activated EGFR to the lysosomes for degradation after endocytosis from the cell surface and release from the Golgi (PubMed:12198132, PubMed:15498486, PubMed:17550970, PubMed:17101778, PubMed:18088323, PubMed:21040701). Involvement in retromer-independent endocytic trafficking of P2RY1 and lysosomal degradation of protease-activated receptor-1/F2R (PubMed:16407403, PubMed:20070609). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). Required for endocytosis of DRD5 upon agonist stimulation but not for basal receptor trafficking (PubMed:23152498).
UOM: 1 * 100 µl


Código de Artigo: (BSBTPB9989)
Fornecedor: Boster Bio
Descrição: CA2 is a cytosolic enzyme with the highest activity among all known CAs. The carbonic anhydrases (ACs) form a family of enzymes that catalyze the rapid interconversion of carbon dioxide and water to bicarbonate and protons (or vice versa), a reversible reaction that occurs relatively slowly in the absence of a catalyst. Mutations in the CA2 gene result in the CA II deficiency syndrome, an autosomal recessive disorder that produces osteopetrosis, renal tubular acidosis and cerebral calcification. This gene is mapped to 8q22.
UOM: 1 * 100 µG


Fornecedor: MOLECULAR DEVICES
Descrição: Transform your whole colony picking process by eliminating the risk of double picks or blank wells, reducing manual picking errors and avoiding cross-contamination. With a QPix® system, you can rely on advanced imaging and analysis combined with high precision robotics to pick the right colony every time. Highly robust performance ensures data quality and high viability of picked colonies.

Preço sob consulta
O stock para este item é limitado. Por favor, certifique-se de que efetuou o seu login para visualizar o stock disponível. Se a call ainda é exibida e precisar de ajuda, por favor, ligue para 213 600 770
O stock para este item é limitado. Por favor, certifique-se de que efetuou o seu login para visualizar o stock disponível. Se a call está visível e precisar de ajuda, por favor, ligue para 213 600 770
Este produto é sujeito a regulamentação especifica.
Em caso de encomenda, será contactado a solicitar documentação complementar necessária e/ou obrigatória (licença, autorização ou declaração de uso final) para a continuidade do pedido. Agradecemos a vossa compreensão
Este produto é sujeito a regulamentação especifica.
Em caso de encomenda, será contactado a solicitar documentação complementar necessária e/ou obrigatória (licença, autorização ou declaração de uso final) para a continuidade do pedido. Agradecemos a vossa compreensão.
Este produto está bloqueado. Para obter mais informações, contacte a VWR através do número 213 600 770.
O produto pretendido já não se encontra disponível. O produto indicado é um substituto.
Este produto encontra-se em rutura de stock. Poderá encontrar alternativas pesquisando pelo código de artigo indicado acima. Se precisar de ajuda, por favor contacte a VWR através do 213 600 770.
369 - 384 of 562
no targeter for Bottom