Print…

Procurou por: Inosine+Pranobex


291  resultados encontrados

SearchResultCount:"291"

Sort Results

Visualização em Lista Easy View (new)

Classifique os resultados da pesquisa

Fornecedor: Biotium
Descrição: This antibody recognizes a protein of ~90 kDa, which is identified as Adenosine Monophosphate Deaminase, isoform E (AMPD3). It has 767 amino acids and is assigned an EC 3.5.4.6. It is a highly regulated enzyme that catalyzes the hydrolytic deamination of adenosine monophosphate to inosine monophosphate, a branch point in the adenylate catabolic pathway. AMPD3 gene encodes the erythrocyte (E) isoforms, whereas other family members encode isoforms that predominate in muscle (M) and liver (L) cells. This MAb shows reactivity with cells of the erythroid lineage at all stages of maturation in the peripheral blood, bone marrow, and fetal liver. Non-erythroid lineages are negative by flow cytometry. This MAb is useful in the diagnosis of erythroleukemia, identification of bone marrow erythroid precursors, gating erythroid nucleated precursor cells from malignant cells in bone marrow specimens.

Fornecedor: Biotium
Descrição: This antibody recognizes a protein of ~90 kDa, which is identified as Adenosine Monophosphate Deaminase, isoform E (AMPD3). It has 767 amino acids and is assigned an EC 3.5.4.6. It is a highly regulated enzyme that catalyzes the hydrolytic deamination of adenosine monophosphate to inosine monophosphate, a branch point in the adenylate catabolic pathway. AMPD3 gene encodes the erythrocyte (E) isoforms, whereas other family members encode isoforms that predominate in muscle (M) and liver (L) cells. This MAb shows reactivity with cells of the erythroid lineage at all stages of maturation in the peripheral blood, bone marrow, and fetal liver. Non-erythroid lineages are negative by flow cytometry. This MAb is useful in the diagnosis of erythroleukemia, identification of bone marrow erythroid precursors, gating erythroid nucleated precursor cells from malignant cells in bone marrow specimens.

Código de Artigo: (BOSSBS-2959R-A350)
Fornecedor: Bioss
Descrição: Serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter, elicits a wide array of physiological effects by binding to several receptor subtypes, including the 5-HT2 family of seven-transmembrane-spanning, G-protein-coupled receptors, which activate phospholipase C and D signaling pathways. This gene encodes the 2C subtype of serotonin receptor and its mRNA is subject to multiple RNA editing events, where genomically encoded adenosine residues are converted to inosines. RNA editing is predicted to alter amino acids within the second intracellular loop of the 5-HT2C receptor and generate receptor isoforms that differ in their ability to interact with G proteins and the activation of phospholipase C and D signaling cascades, thus modulating serotonergic neurotransmission in the central nervous system. Studies in humans have reported abnormalities in patterns of 5-HT2C editing in depressed suicide victims. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-4176R-A350)
Fornecedor: Bioss
Descrição: Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-4176R)
Fornecedor: Bioss
Descrição: Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-4176R-FITC)
Fornecedor: Bioss
Descrição: Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-4176R-A488)
Fornecedor: Bioss
Descrição: Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-2959R-CY3)
Fornecedor: Bioss
Descrição: Serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter, elicits a wide array of physiological effects by binding to several receptor subtypes, including the 5-HT2 family of seven-transmembrane-spanning, G-protein-coupled receptors, which activate phospholipase C and D signaling pathways. This gene encodes the 2C subtype of serotonin receptor and its mRNA is subject to multiple RNA editing events, where genomically encoded adenosine residues are converted to inosines. RNA editing is predicted to alter amino acids within the second intracellular loop of the 5-HT2C receptor and generate receptor isoforms that differ in their ability to interact with G proteins and the activation of phospholipase C and D signaling cascades, thus modulating serotonergic neurotransmission in the central nervous system. Studies in humans have reported abnormalities in patterns of 5-HT2C editing in depressed suicide victims. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-2959R-CY5.5)
Fornecedor: Bioss
Descrição: Serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter, elicits a wide array of physiological effects by binding to several receptor subtypes, including the 5-HT2 family of seven-transmembrane-spanning, G-protein-coupled receptors, which activate phospholipase C and D signaling pathways. This gene encodes the 2C subtype of serotonin receptor and its mRNA is subject to multiple RNA editing events, where genomically encoded adenosine residues are converted to inosines. RNA editing is predicted to alter amino acids within the second intracellular loop of the 5-HT2C receptor and generate receptor isoforms that differ in their ability to interact with G proteins and the activation of phospholipase C and D signaling cascades, thus modulating serotonergic neurotransmission in the central nervous system. Studies in humans have reported abnormalities in patterns of 5-HT2C editing in depressed suicide victims. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Fornecedor: Biotium
Descrição: This antibody recognizes a protein of ~90 kDa, which is identified as Adenosine Monophosphate Deaminase, isoform E (AMPD3). It has 767 amino acids and is assigned an EC 3.5.4.6. It is a highly regulated enzyme that catalyzes the hydrolytic deamination of adenosine monophosphate to inosine monophosphate, a branch point in the adenylate catabolic pathway. AMPD3 gene encodes the erythrocyte (E) isoforms, whereas other family members encode isoforms that predominate in muscle (M) and liver (L) cells. This MAb shows reactivity with cells of the erythroid lineage at all stages of maturation in the peripheral blood, bone marrow, and fetal liver. Non-erythroid lineages are negative by flow cytometry. This MAb is useful in the diagnosis of erythroleukemia, identification of bone marrow erythroid precursors, gating erythroid nucleated precursor cells from malignant cells in bone marrow specimens.

Fornecedor: Biotium
Descrição: This antibody recognizes a protein of ~90 kDa, which is identified as Adenosine Monophosphate Deaminase, isoform E (AMPD3). It has 767 amino acids and is assigned an EC 3.5.4.6. It is a highly regulated enzyme that catalyzes the hydrolytic deamination of adenosine monophosphate to inosine monophosphate, a branch point in the adenylate catabolic pathway. AMPD3 gene encodes the erythrocyte (E) isoforms, whereas other family members encode isoforms that predominate in muscle (M) and liver (L) cells. This MAb shows reactivity with cells of the erythroid lineage at all stages of maturation in the peripheral blood, bone marrow, and fetal liver. Non-erythroid lineages are negative by flow cytometry. This MAb is useful in the diagnosis of erythroleukemia, identification of bone marrow erythroid precursors, gating erythroid nucleated precursor cells from malignant cells in bone marrow specimens.

Código de Artigo: (BOSSBS-2959R-FITC)
Fornecedor: Bioss
Descrição: Serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter, elicits a wide array of physiological effects by binding to several receptor subtypes, including the 5-HT2 family of seven-transmembrane-spanning, G-protein-coupled receptors, which activate phospholipase C and D signaling pathways. This gene encodes the 2C subtype of serotonin receptor and its mRNA is subject to multiple RNA editing events, where genomically encoded adenosine residues are converted to inosines. RNA editing is predicted to alter amino acids within the second intracellular loop of the 5-HT2C receptor and generate receptor isoforms that differ in their ability to interact with G proteins and the activation of phospholipase C and D signaling cascades, thus modulating serotonergic neurotransmission in the central nervous system. Studies in humans have reported abnormalities in patterns of 5-HT2C editing in depressed suicide victims. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-4176R-A680)
Fornecedor: Bioss
Descrição: Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-4176R-CY7)
Fornecedor: Bioss
Descrição: Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-4176R-CY3)
Fornecedor: Bioss
Descrição: Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
UOM: 1 * 100 µl


Código de Artigo: (BOSSBS-4176R-A647)
Fornecedor: Bioss
Descrição: Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
UOM: 1 * 100 µl


Preço sob consulta
O stock para este item é limitado. Por favor, certifique-se de que efetuou o seu login para visualizar o stock disponível. Se a call ainda é exibida e precisar de ajuda, por favor, ligue para 213 600 770
O stock para este item é limitado. Por favor, certifique-se de que efetuou o seu login para visualizar o stock disponível. Se a call está visível e precisar de ajuda, por favor, ligue para 213 600 770
Este produto é sujeito a regulamentação especifica.
Em caso de encomenda, será contactado a solicitar documentação complementar necessária e/ou obrigatória (licença, autorização ou declaração de uso final) para a continuidade do pedido. Agradecemos a vossa compreensão
Este produto é sujeito a regulamentação especifica.
Em caso de encomenda, será contactado a solicitar documentação complementar necessária e/ou obrigatória (licença, autorização ou declaração de uso final) para a continuidade do pedido. Agradecemos a vossa compreensão.
Este produto está bloqueado. Para obter mais informações, contacte a VWR através do número 213 600 770.
O produto pretendido já não se encontra disponível. O produto indicado é um substituto.
Este produto encontra-se em rutura de stock. Poderá encontrar alternativas pesquisando pelo código de artigo indicado acima. Se precisar de ajuda, por favor contacte a VWR através do 213 600 770.
113 - 128 of 291
no targeter for Bottom